skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Vladislav Sergeevich Sorokin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vladislav Sergeevich Sorokin (Ed.)
    Phononic crystals can develop defects during manufacturing that alter the desired dynamic response and bandgap behavior. This frequency behavior change can enable successful defect inspection if the characteristic defect response is known. In this study, the behavior of a defective square unit cell comprising a freed and shortened leg is studied using a wave finite element method and an approximate continuous-lumped model to elucidate the defect induced qualitative dynamical features. These metrics are a computationally inexpensive alternative to modeling a defective unit cell within a large pristine array entirely in finite elements. The accuracy of these models is validated by comparing the result to a full finite element model. The impact of a shortened unit cell leg on the behaviors of an infinite array of defective cells and a finite array with a single defect are successfully predicted through dispersion curves and frequency response functions, respectively. These methods reveal defect-induced modes that split the local resonance bandgap of the pristine cell, as well as new anti-resonances resulting from the shortened leg. The study uses both approaches to evaluate the effect of defects in complex phononic crystal geometries and provides a comparative evaluation of the results of each model. 
    more » « less